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Abstract. The Sherman theorem on closed paths for the two-dimensional Ising model on 
a square with t boundary conditions is generalised to arbitrary boundary conditions. The 
refinement allows a rigorous cluster expansion for boundary observables (in particular for 
the surface tension) in terms of open random trajectories on the lattice. As an application 
we discuss the grand canonical cluster expansion for the surface tension and prove its 
convergence to the canonical cluster expansion and to the SOS limit. 

1. Introduction 

The combinatorial approach to the solution of the two-dimensional k ing  model in 
zero field is well known and  has been considered in past years (Newel1 and Montroll 
1953, Sherman 1960, Burgoyne 1963, Glasser 1970). The rigorous treatment of the 
combinatorics (for the case of open or  periodic boundary conditions) for the free 
energy was given by Sherman (1963), who rigorously proved the Feynman-Kac conjec- 
ture on paths and graphs. The above theorem has been used more recently, in 
connection with the analysis of the absence of non-translationally invariant equilibrium 
states in the two-dimensional Ising model at low-temperature (Merlini 1978, 1981). A 
problem which is often discussed is the relation between the k ing  model and the SOS 

(solid-on-solid) model in all dimensions. In particular one expects that in some 
two-dimensional models, the surface tension computed in the sos limit coincides with 
the exact result for T S  T, ( T ,  being the critical temperature). Nevertheless, the 
fundamental reason for this is still unknown. 

This problem was discussed recently and it was claimed that a direct analysis of 
the graphical structure associated with the system, in addition to  an  application of the 
law of large numbers, could be performed (Groeneweld 1982). On the other hand it 
may be that, even in two dimensions, the SOS limit for the surface tension yields the 
exact result for a restricted class of many-body interactions on the lattice and  this 
problem is not related to the absence of non-translationally invariant equilibrium states 
in two dimensions. 

Here we d o  not treat the general problem suggested by Groeneweld; we merely 
restrict ourselves to the ZD Ising model on a square lattice. For this model, we first 
reconsider the Sherman theorem on paths and graphs for an open square (established 

t Present address: Facultade de Engenharia, Propedeuticas Civil, R Dos Bragas, 4099 Porto, Portugal 
P Present address: Istituto di Fisica, Universita di Milano, Via Celoria 16, 20133 Milano, Italia. 

0305-470/87/175991+ 10$02.50 0 1987 IOP Publishing Ltd 599 1 



5992 F Calheiros, S Johannesen and D Merlini 

for + or  equivalently for open boundary conditions by duality), and generalise it to 
arbitrary boundary conditions 6 in Q 2 ;  the ratio between two partition functions with 
arbitrary conditions and  the cluster expansion for observables at the boundary may 
then be given in terms of a well defined set of open and closed trajectories on the 
lattice. As an  application we first analyse the cluster expansion for the grand canonical 
surface tension and show rigorously its convergence to that of the canonical one; 
moreover we check graphically its relation to the SOS limit in § 3 for T S  T,. In § 4 
we give a proof that the grand canonical surface tension coincides with that of the SOS 
limit for T T,; the Onsager formula is also recovered within the combinatorial method 
we have considered. The coincidence of the SOS limit with the exact result is shown 
to be connected with the property of the eigenvalues of the matrix propagator for 
trajectories. The result is established for the two-dimensional Ising model; it is neverthe- 
less expected that it may be extended by other methods to a more general class of 
two-dimensional models. The combinatorial method may further be useful in the 
analysis of some interesting calculations for the Ising model. 

2. A refinement of the Sherman theorem on paths 

Let A c Z2 be a finite rectangular box of IAI sites. Let U, = *l, i E .A be an Ising spin 
variable and U, = n l e A  U, ,  A c A, and let E be any bond on the lattice. ( B  = two-point 
nearest-neighbour subset of .4 for the k ing  model.) Let -JB be the ferromagnetic 
interaction associated with any bond B on the lattice. With 93 the set of all boundary 
conditions b on the boundary dA ( A  n dA = 4 )  of the finite fixed box A,  let each element 
b E 93 be defined as the subset of sites {io} c d A  where u4, = - 1 Vio  E b ;  the other points 
of a , i \6  are fixed in the configuration U = +l .  Now, we can decompose b into maximal 
connected components {C,} ,  ( i  = 1 , 2 , .  . . , a )  such that U C, = b and the C, U C, 
are not connected for i # j .  We then consider the dual lattice A* to '1, whose points 
are the centres of each unit square of .i u d A .  For every bond E c . i u d l . l  there is 
associated a dual bond B* (orthogonal to B )  and for each boundary field on 6 there 
corresponds a dual path b* given by 6* = {BF}, which is the set of bonds {BT}  dual 
to {B , }  = {( i, io )}  such that up% = -U, ( i  E A and io€  d i i ) .  Moreover 6* = U I CT, where 
CT is a connected set of bonds {B;} along the boundary of the open square A*. Notice 
that we have IIs:Ec: BF= cT=(i?, i? ) ,  where if and i t  are the two extreme points 
of CT. We now use a low-high temperature duality transformation; it is known that 
to every pair of dual bonds ( B ,  B*) ,  the interactions are related by tanh K $  = 
exp(-ZK,), KB=/3JB ,  P = ( k T ) - ' .  The Hamiltonian H I  on ,A is given by H , =  
-C, J B  U, (boundary fields included). We set z b  = Tr exp(-PH,), so that Z, is the 
partition function with 6 the boundary condition. By the low-high temperature duality 
transformation considered above we have that (Gruber er a1 1977) 

We now work with high-temperature graphs associated to A* with an  open boundary 
condition, which are the low-temperature closed multipolygons originating from the 
+ boundary condition on A.  The Sherman theorem on paths (established for an  open 
domain A* with arbitrary two-body interactions) applied to Z,* states that the reduced 
partition function T,* is given by the exponential of a sum of closed connected 
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trajectories (1-cycles). The cluster expansion becomes 

In equation ( 2 ) ,  P denotes any 1-cycles or closed connected path on -A* by weight 
W(P).  pp is the multiplicity of the 1-cycle P, N ,  the number of self-crossings of P 
and nB* the number of times the bond B* occurs in P. Further EB*eP nB. = I ( P )  is the 
length of P. Notice that a change of 7~ degrees in the trajectory of the path P is not 
allowed; moreover tanh K*,* = exp(-2KB) is the low-temperature Boltzmann factor 
associated with any bond B* c A*; the above series converges up to the critical point 
given by e-2K = tanh K in the case where K B  = K,  VB. We now proceed and generalise 
the Sherman theorem on paths to any boundary condition b. 

Theorem. Let Z\,b be the exact partition function of the two-dimensional Ising model 
in zero field with arbitrary boundary condition b on A and let b* = U p=, CT be defined 
as above. Let &,cf be the set of all trajectories on A* (open in ab* = d (  U ,  c:) = II, Cf,  
so that ab*  are the endpoints of b*) by total weight Ws,,,cy. Then the cluster expansion 
for 2i .b  on A is given by 

where Wsc. is the sum of the weights of all trajectories P and A*, open in dCT (which 
start and which end in the two extreme points of C y )  i.e. 

Thus Z\,b splits into the product of Z , , +  (up to a factor, the exponential of the sum 
of all closed connected paths) and R \ , b  (the contribution of all open paths, containing 
the effect of the boundary condition b) .  
Proof: We introduce a path p ?  of auxiliary bonds { B : }  outside A* with two-body 
interactions { x l / }  for any component CT of b* (the construction used in the proof is 
illustrated in figure 1) and define 

Z,* ( {A , / ,  K*H = ~ r ,  exp( - P * K * + E  Al l f fB : )  = A  e x p ( ~  WP)) (4) 
1 . 1  

B: 

+ +I 1:  
t t + + t t t +  

Figure 1. A boundary condition b, with b* = C y  U C: U C:, the auxiliary path pT = ET 
for C ?  and a path appearing in S,=;cr. 
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where A is an  immaterial factor and P is still any closed path which may or may not 
contain auxiliary bonds B; (Sherman theorem). The correlation of interest in equation 
(3 )  is then given by 

Let us first treat the case where b* just consists of one component, i.e. b* = CT. 
From the Sherman theorem it is sufficient to assimilate the auxiliary bonds {BT/} to a 
single 'bond' (a line) with interaction A l ,  outside A*, whose endpoints coincide 
with the endpoints of cT, since any path P passing through {BT,} contains every auxiliary 
bond BT, the same number of times. We then have 

As A I  + 0 the only contribution is given by those P such that ngi = 1; thus w p  = 1 and 
we obtain 

Equation (7) proves the theorem for b* = CT, for all h finite. If b* = (CT, C?) ,  it is 
easily seen in the same manner that 

( c + ~ ; u c ~ ) ( { A i = A z = O ,  K * } ) =  Wsri ,.;+ WsCiWs,, (8) 
U cf. For where WSci c5 denotes the contribution of all paths with endpoints 

b* = (CT, CT, CT) we obtain 

The formula for the general case b* = (CT, . . . , C:) is then immediate and  the theorem 
is proven. 

As an  application, we briefly discuss the grand canonical cluster expansion for the 
surface tension, and check graphically its convergence to the SOS limit for T s  T, after 
proving that it coincides with the canonical cluster expansion. 

3. Grand canonical cluster expansion for the surface tension 

Let Z+,- be the usual partition function of the model with mixed boundary condition 
i.e. u4, = +1 V,, = (a,  b )  E aA,  b < 0 and uh = - 1, b > 0, for a box of length L +  1, height 
2M, with horizontal and vertical interactions J, and Jz respectively. The surface tension 
is defined as usual by 

where i l  = (-  L/2,0),  and i2 = (L /2 ,0 ) .  By the theorem we have that 
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where n, is the number of interactions in along the ith direction. To make contact 
with the SOS limit (defined below), it is useful to consider the grand canonical surface 
tension i considered some time ago (Gallavotti 1972). One has 

(11) 

In equation (1 l ) ,  Zk,M,+- is defined with +- boundary conditions but where on one 
side the separation line between + and - is at the height i, and where the limit M + cc 
has been taken. exp(-?L) is the sum of all paths starting at il = (-L/2,0) and ending 
a tany  i = ( L / 2 ,  i ) ,  i e Z  (seefigure2). Wefirstshowthatas L-,co, . T = . r V T s T , .  To 
do  this, we apply some inequalities (Messager and Miracle-Sole 1977, Schrader 1977, 
Hegerfelt 1977, Bricmont 1985), valid in particular for the two-dimensional Ising model 
on the strip 

z k, M.+ - @=exp(-?L)= Iim C -- - c ( q ~ J L , d ~ * ) .  
M-.W I S Z  Z L , M , + +  l a 2  

= ( L ,  CO), i.e. ( U ~ ~ U , ) ~ ( ~ , , U , ~ )  and ( u , , u , ) s ( ~ , , ~ , )  (see figure 2). Then 

Since for T >  T,, (cr, ,a,)~exp(-mli,- i l)  for some m>0,  we obtain E,eZ(u12u,)ES 
C (  E ,  m) uniformly in L; moreover limL.+m L-' In C = 0. From the definition of 7 we 
then have that ? 5 (1 - E ) T .  On the other hand, application of the Griffith's inequality 
gives E,.z ( u , , ~ , )  5 (rtIu,J. Thus i S T. Finally T (  1 - E )  s 7 s T. By taking the lim E + 0, 
we thus obtain T = i, T S T,. So the grand canonical surface tension coincides with 
the canonical one for T s T,; this result is clearly not restricted to the two-dimensional 
Ising model under consideration here where it is also known by explicit computation 
that T = T~ where T~ is the surface tension calculated by Onsager. So, without knowing 
that T = T ~ ,  the point to be investigated is the relationship between the SOS limit and 
the grand canonical surface tension (this would also be of interest for more general 
models where T is not known). The problem may be analysed in a graphical context. 
For the two-dimensional Ising model the conjecture is that all trajectories having at 
least four bonds at some point and coming back cancel exactly and thus that for the 
model, the SOS limit is exact for T S  T,. The fundamental reason why and when the 
SOS limit is exact is hard to discover using standard inequalities, even with the one 
discussed above and established in two dimensions for T s T,. The difficulty persists 
also even if one tries to solve the problem using symmetry properties of the graphs 
associated with the cluster expansion. So, in this section, we limit ourselves to a short 

I +  
t t 
Figure 2. Two paths appearing in the cluster expansion of ( u , , ~ , ) .  P ,  compensates exactly 
for another path p ,  not shown in the figure. P2 appears also in the computation of the 
SOS limit. 
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discussion and investigate (1 1) to some order in the expansion parameter by using the 
cluster expansion. With @' = exp[2K,( L - l)]@ the SOS limit for the strip (L, 00) is 
defined and easily computed to be 

@koS(KI) = Jil- @'( K , ,  K z )  = exp ( - L  In tanh K , ) .  (12) 

@' may also be computed for K 2  --* 0. In  fact 

where 2,- and z++ are the partition functions of a one-dimensional Ising model of 
shape L with interaction J ,  and boundary conditions +- and ++ respectively. Then 

(15) 

Since 

z + - / z + + = ( l - X L ) / ( l + X L )  

where x = tanh K , ,  we have that 

@' (Kl ,  K , = O ) = ~ - ~ = e x p ( - L l n  tanh K , ) = W ( K l ,  K , = ~ ~ ) = @ ; o s .  

The above equality indicates that if 

2Kz - ?( K ,  , K,) = L-' In @'( K ,  , K,) 

were monotonic in K 2 ,  this would imply with (1 1) that T~~~ = T~~~~~ = 2( K ,  - K T )  for 
T s  T,, i.e. for 

K , - K T = K 2 + i I n t a n h  K , z 0 .  

The first few terms of the cluster expansion for @ are easily computed, and are 

@ = 

where x, = e-2KI, and this coincides exactly with the expansion of the function 

(a,,a,) = exp[-2K2(L- 1)]( 1 +2Lx, +2L2x:+ ($L3+:L)x:+. . .) 
l € Z  

@ = exp[-2K2( L - l ) ]  - 
( ; : : : ) L  

which is the SOS limit computed above. Finally, for a one-dimensional strip ( L =  2), 
the cluster expansion may easily be computed to higher orders and we obtain 

aL=, 2 1 +4x,  + 8x: + 12x:+ 16x:+20x: +24x t+ .  . .). (17) 
The series also coincides with the expansion of @ above for L = 2 .  I n  5 4 we give 

a proof that ? = T ~ ~ ~ ,  using the combinatorial method we have worked out; the result 
is obtained by a careful analysis of the eigenvalues of the matrix propagator in Fourier 
space. 

4. Proof of ? = T~~~ 

We now proceed to prove the equality 7 = rsOs for T S  T, using the combinatorial 
method, which reflects the local structure of the interaction on the lattice; the counting 



Surface tension in 2D Ising model 5997 

problem for the trajectories is obtained by means of the propagator for trajectories, 
which in Fourier space is given (Gruber et al 1977) by the 4 x 4 matrix: 

x e'K2t1ff/4 

x el'? O I  

e - ~ K ,  0 e - ~ K 2 - ~ r r  4 

e - ~ K l + i r r / 4  e - ~ K ,  e ~ K l - ~ r r / 4  

0 x e--IK2+lrri4 e ~ K 1  e ~ K , - l n / 4  

e ~ K l + ~ r r / 4  
e - ~ K l - ~ r r / 4  0 

Lc 

@ = lo2* d K ,  Tr ML, ( K , ,  K 2  = 0) exp[iK,(L- l ) ]  
f = L - l  

M,, ( K )  = 

where K = ( K ,  , K 2 )  and X = tanh K * = e-2K (for simplicity we restrict ourselves to 
the case where J ,  = J z ) .  Then, from equation (1 1) we obtain: 

= d K ,  exp[iK,(L-l)]  Tr(-)(K,=O) MS,! 
I - Me, 

where 
Det(I  - M ) ( K z  = 0) = (1 +x2) '= -2x(1 -x2) (1  +cos K , )  

since the eigenvalue equation M = AI ,  i.e. Det( M - I A )  = 0, is given by the solution of  
( A 2 +  x2)* - 2hx(A2 - x')( 1 +COS K , )  = O .  

We now remark that the matrix propagator of trajectories for the SOS model reduces to 
e - ~ K ,  e - ~ K 2 - ~ r r / 4  0 e ~ K z + ~ r r / 4  

0 
o x elK? O 1. x e-'', 0 

0 0 

e - ~ K , + ~ r r 1 4  

M P ,  m ( K )  = 0 I x e-' 1 - l  n/ 0 

The corresponding eigenvalue equation is given by 

Introducing the variables A / x  = 5 and elK! = z ,  then the eigenvalue equations for the 
two models are given by 

Det( M - A I ) ( K 2  = 0) = A ( A  - x ) [ A 2 -  Ax(1 - x2  e-IKl] = 0. 

For the S O S  model (191, 5, = 0 (A, = 0) and t2 = 1 ( A 2  = x) do not give any contribution 
to the integral for @. For the Ising model (18), 5, and 5' are the solutions of 

By a variable change, it may easily be shown that their contribution to @ also vanishes. 
In fact 

z + t( 1 - ()/( 1 + 5) = 0. 

0 = lo2= d K ,  exp[iK,(L- l ) ]  (A:- '  - A ; - ' )  
1 - A ,  l - A 2  

=[02rrdKl exp[iK,(L-1)] 
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With z = eiKi and  from z + [(l - 5)/(1+ 5) = 0, it is easily seen that as z runs from 0 
to 2 ~ ,  el runs on the half circle of radius f i  with centre C = (1,O) from the point 
P,  = (1  + f i , 0) to the point P2 = ( 1  -a, 0) and  & from Pz to PI.  So the total contribu- 
tion of and  t2 to 0 reduces to the contour integral on the above circle of a 
meromorphic function with no pole inside the circle for T < T,, i.e. 161 <a- 1, and 

We now remark that t3 and t4 are identical for the Ising and  the SOS model since they 
are the solutions of the same equation given by z + ( 1  + ()/(( 1 - 6)  = 0. So this shows 
that the value of @ is the same, reflecting the strong cancellation in the cluster expansion 
and the proposition is proven. 

Clearly, the explicit computation for the contribution of & and t4 to @ may be 
carried out explicitly as for and t2.  We obtain, as before, a contour integral over 
dCd2 of a meromorphic function of 6. The difference is the presence of a simple pole 
at 6 = 0  and a pole of order L at 5 =  1, i.e. 

The computation is easier in the z plane than in the 5 plane; for L >  1 there is only 
one simple pole at z, = x(  1 + x)/(  1 - x)  for T < T,. We obtain: 

Notice that f ( z )  is a meromorphic function of z as may easily be checked. Since 

we obtain 

a = x"-'[( 1 + x)/(  1 - X)]L 

and 

-In 
L-c€ L 

? =  lim -- - 2( K - K * )  

for T s  T,, which is the surface tension calculated by Onsager, and  obtained here, 
within the combinatorial method of paths, as a corollary to our proposition. Thus 
r = ? = r s o s = r o  for T S  T,. 

5. Conclusion 

In this work we have extended the combinatorial method for the two-dimensional 
Ising model (on square, hexagonal and triangular lattices) in order to obtain a rigorous 
cluster expansion for boundary observables like the surface tension in terms of a well 
defined set of open random trajectories on the lattice; the method may be pursued for 
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other observables inside the lattice with additional non-trivial modifications and this 
allows for the possibility of an  analysis of some interesting open problems in a 
combinatorial context (see below). As a second step, we have used some refined 
inequalities for ferromagnetic systems to prove that in the thermodynamic limit the 
canonical surface tension coincides with the grand canonical one for T s  T,. This 
result holds for a large class of two-dimensional ferromagnets and for an interface 
along a main axis of the lattice. Using the above two propositions we have then proved, 
using the matrix propagator (a peculiarity of the Ising model) that the SOS limit is 
exact for an  interface along one of the axes of the lattice. 

The SOS limit gives the exact result in the region T s  T, along a main axis since 
from the above equivalence between the canonical and  grand canonical surface tension 
and  from the combinatorial structure of the cluster expansion, any path in the grand 
canonical surface tension which starts at a given point on  one side of the boundary is 
allowed to reach any point of the other boundary of the string. This kind of allowed 
fluctuation allows a path with self-crossing occurring in the canonical surface tension 
(and not compensating for another one) to compensate for a path appearing in the 
grand canonical surface tension, due to the fact that for an  interface along one axis 
of the lattice, an axial symmetry applied to the path transforms the path into another 
one excluded from the SOS limit but present in the grand canonical expansion. The 
two paths compensate one for the other since they have the same Boltzmann factor in 
absolute value and the difference is only a factor -1 related to the number of self- 
crossing modulo 2. Thus only paths which contribute to the SOS limit persist and  all 
have positive weight. This is exactly what we have proved. A simple example is given 
in figure 3. 

r ' j  

U 

n ----I-- - - 

U 

Figure 3. Four paths occurring in the grand canonical cluster expansion; P,  compensates 
for Pz in the canonical expansion. P, compensates for P ,  only in the grand canonical 
expansion. 

From the above discussion and propositions we expect that the result holds only 
for an  interface along one of the main axes. One of the reasons is that the equality 
between canonical and grand canonical surface tension may not be proven using the 
refined inequalities. The equality T = T~~~ is nevertheless expected to be correct for an  
interface along a main axis for a larger class of two-dimensional ferromagnets. For 
example, in the two-dimensional Ising model on a triangular lattice with three-body 
nearest-neighbour interactions ( a  model which is self-dual and which has the same 
critical point as the Ising model considered here) it is known that T + O  as IT- Tc(2'3, 
v = 3, instead of 1; the equality T ,  = T%,  may be proven. We expect that T = T ~ ~ ~ ;  here 
this equality may not be proven due to the lack of a matrix propagator for trajectories. 
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We then expect that the more general method of the transfer matrix could be more 
useful to solve the general problem (due to the existence of some symmetry properties 
in the transfer matrix which have not yet been discovered) and may allow us to extract 
just the SOS contribution. This would be of interest in a geometrical computation of 
the indices v in the SOS limit alone. Returning finally to the computations presented 
in this work, it should nevertheless be mentioned that an  extension of the method of 
paths given here may be of significance in the search for an  exact solution of the 
susceptibility in closed form for the Ising model. In fact preliminary computations 
yield the first few terms of the susceptibility series exactly; if a local weight in the 
counting problem of the paths in the susceptibility series may be obtained, then the 
susceptibility could be given in terms of integrals over elliptic functions as discussed 
some time ago (Temperley 1972). 
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